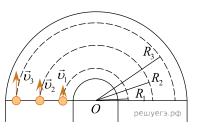

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1.

На рисунке представлен график зависимости x, м координаты x тела, движущегося вдоль оси Ox, от времени t. Тело находилось в движении только в течение промежутка(-ов) времени:

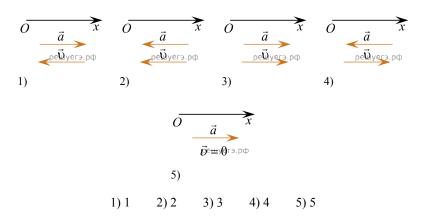
2. В таблице представлено изменение с течением времени координаты автомобиля, движущегося с постоянным ускорением вдоль оси Ox.


Момент времени <i>t</i> , с	0,0	2,0	4,0
Координата х, м	-3,0	0,0	9,0

Проекция ускорения a_x автомобиля на ось Ox равна:

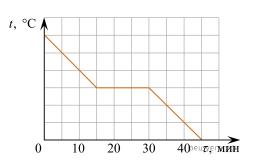
1) 1,0
$$\text{m/c}^2$$
 2) 1,5 m/c^2 3) 2,0 m/c^2 4) 2,5 m/c^2 5) 3.0 m/c^2

3.


Три мотогонщика равномерно движутся по закруглённому участку гоночной трассы, совершая поворот на 180° (см. рис.). Модули их скоростей движения $\upsilon_1=20$ м/с, $\upsilon_2=25$ м/с, $\upsilon_3=30$ м/с, а радиусы кривизны траекторий $R_1=12$ м, $R_2=20$ м, $R_3=28$ м. Промежутки времени Δt_1 , Δt_2 , Δt_3 , за кото-

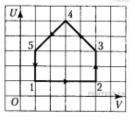
рые мотогонщики проедут поворот, связаны соотношением:

1)
$$\Delta t_1 = \Delta t_2 = \Delta t_3$$
 2) $\Delta t_1 > \Delta t_2 > \Delta t_3$ 3) $\Delta t_1 < \Delta t_2 < \Delta t_3$ 4) $\Delta t_1 > \Delta t_2 = \Delta t_3$ 5) $\Delta t_1 = \Delta t_2 > \Delta t_3$


4. Кинематический закон движения материальной точки вдоль оси Ox имеет вид: $x(t) = 8 + 2t - 3t^2$, где координата x выражена в метрах, а время t — в секундах. Скорость \vec{v} и ускорение \vec{a} материальной точки в момент времени t_0 = 0 с показаны на рисунке, обозначенном цифрой:

- **5.** Укажите измерительный прибор, в основе принципа действия которого лежит закон всемирного тяготения:
 - 1) линейка; 2) радар; 3) жидкостный термометр; 4) пружинные весы; 5) манометр на велонасосе.
- **6.** В двух вертикальных сообщающихся сосудах находится ртуть ($\rho_1 = 13.6 \text{ г/см}^3$). Поверх ртути в один сосуд налили слой воды ($\rho_2 = 1.00 \text{ г/см}^3$) высотой H = 11 см. Разность Δh уровней ртути в сосудах равна:
 - 1) 8,1 mm 2) 10,5 mm 3) 12,4 mm 4) 14,3 mm 5) 15,8 mm

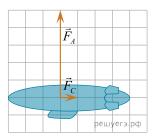
7.


В момент времени $\tau_0=0$ мин жидкое вещество начали охлаждать при постоянном давлении, ежесекундно отнимая у вещества одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени t. Одна треть массы вещества закристаллизовалась к моменту времени t1, равному:

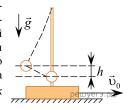
- 1) 5 мин 2) 20 мин 3) 25 мин 4) 30 мин 5) 35 мин
- **8.** При изобарном нагревании идеального газа, количество вещества которого постоянно, объем газа увеличился в k=1,50 раза. Если начальная температура газа была $T_1=300~{\rm K}$, то изменение температуры Δt в этом процессе составило:
 - 1) 27,0 K
- 2) 150 K
- 3) 300 K
- 4) 360 K
- 5) 450 K

9.

С идеальным одноатомным газом, количество вещества которого постоянно, провели процесс $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$. На рисунке показана зависимость внутренней энергии U газа от объема V. Укажите участок, на котором количество теплоты, полученное газом, шло только на работу, которую газ совершал:

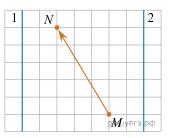


- 1) $1 \rightarrow 2$
- 2) $2 \rightarrow 3$
- 3) $3 \rightarrow 4$
- 4) 4→5
- 5) $5 \rightarrow 1$
- **10.** Среди перечисленных ниже физических величин векторная величина указана в строке, номер которой:

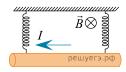

- 1) электрическое напряжение; 2) индуктивность; 3) электроёмкость; 4) напряжённость электростатического поля; 5) сила тока.
- **11.** Из одной точки с высоты H бросили два тела в противоположные стороны. Начальные скорости тел направлены горизонтально, а их модули $\upsilon_1=5$ м/с и $\upsilon_2=10$ м/с. Если расстояние между точками падения тел на горизонтальной поверхности земли L=45 м, то чему равна высота H? Ответ приведите в метрах.

12.

Дирижабль летит в горизонтальном направлении с постоянной скоростью. На рисунке изображены сила Архимеда $\vec{F}_{\rm A}$ и сила сопротивления воздуха $\vec{F}_{\rm C}$, действующие на дирижабль. Если сила тяги $\vec{F}_{\rm T}$ двигателей дирижабля направлена горизонтально, а модуль этой силы $\vec{F}_{\rm T}=10~{\rm KH},$ то масса m дирижабля равна ... т.


- **13.** На гидроэлектростанции с высоты h=65 м ежесекундно падает m=200 т воды. Если полезная мощность электростанции $P_{\text{полезн}}=82$ МВт, то коэффициент полезного действия η электростанции равен ... %.
- **14.** На гладкой горизонтальной поверхности установлен штатив массой M=800 г, к которому на длинной нерастяжимой нити подвешен шарик массой m=200 г, находящийся в состоянии равновесия (см. рис.). Штативу ударом сообщили горизонтальную скорость, модуль которой $\upsilon_0=0.95$ м/с. Чему равна максимальная высота h, на которую поднимется шарик после удара? Ответ приведите в миллиметрах.

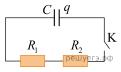
- **15.** В баллоне находится смесь газов: неон $(M_1=20\ \frac{\Gamma}{\text{МОЛЬ}})$ и аргон ($M_2=40\ \frac{\Gamma}{\text{МОЛЬ}}$). Если парциальное давление неона в три раза больше парциального давления аргона, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{МОЛЬ}}$.
- **16.** В теплоизолированный сосуд, содержащий $m_1=100$ г льда ($\lambda=330$ кДж/кг) при температуре плавления $t_1=0$ °C, влили воду (c=4,2 10^3 Дж/(кг °C)) массой $m_2=50$ г при температуре $t_2=88$ °C. После установления теплового равновесия масса m_3 льда в сосуде станет равной ... г.
- 17. При изотермическом расширении одного моля идеального одноатомного газа, сила давления газа совершила работу $A_1=0,52$ кДж. Если при последующем изобарном нагревании газу сообщили в два раза большее количество теплоты, чем при изотермическом расширении, то изменение температуры ΔT газа в изобарном процессе равно ... \mathbf{K} .
- **18.** На оси Ox в точке с координатой x_0 находится неподвижный точечный заряд. От него отдаляется другой точечный заряд, движущийся вдоль оси Ox. Если при изменении координаты движущегося заряда от $x_1=35\,$ мм до $x_2=77\,$ мм модуль силы взаимодействия зарядов изменился от $F_1=64\,$ мкH до $F_2=4,0\,$ мкH, то чему равна координата x_0 неподвижного заряда? Ответ приведите в миллиметрах.


19.

На рисунке изображён участок плоского конденсатора с обкладками 1 и 2, которые перпендикулярны плоскости рисунка. Если при перемещении точечного положительного заряда q=14 нКл из точки M в точку N электрическое поле конденсатора совершило работу A=390 нДж, то разность потенциалов $\phi_1-\phi_2$ между обкладками равна ... В.

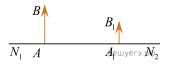
20.

В однородном магнитном поле, модуль индукции которого B=0,10 Тл, на двух одинаковых невесомых пружинах жёсткостью k=10 Н/м подвешен в горизонтальном положении прямой однородный проводник длиной L=0,80 м (см. рис.). Линии магнитной индук-

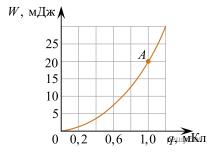


ции горизонтальны и перпендикулярны проводнику. Если при отсутствии тока в проводнике длина каждой пружины была $x_1=44$ см, то после того, как по проводнику пошёл ток $I=25\,$ А, длина каждой пружины x_2 в равновесном положении стала равной ... см.

21. В однородном магнитном поле, модуль индукции которого $B=0,10~{\rm Tr}$, а линии индукции горизонтальны, «парит» в состоянии покоя металлический стержень с площадью поперечного сечения $S=0,10~{\rm cm}^2$. Ось стержня горизонтальна и перпендикулярна линиям магнитной индукции. Если сила тока в стержне $I=12~{\rm A}$, то плотность ρ вещества, из которого изготовлен стержень, равна ... $\frac{\Gamma}{{\rm cm}^3}$.

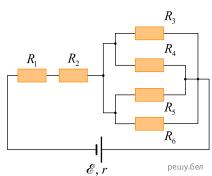

22.

На рисунке представлена схема электрической цепи, состоящей из конденсатора, ключа и двух резисторов, сопротивления которых $R_1=4.0\,$ МОм и $R_2=2.0\,$ МОм. Если электрическая емкость конденсатора $C=1.5\,$ нФ, а его заряд $q=18\,$ мкКл, то количество тепло-



ты Q_2 которое выделится в резисторе R_2 при полной разрядке конденсатора после замыкания ключа K, равно ... мДж.

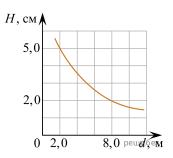
23. Стрелка AB высотой H=4,0 см и её изображение A_1B_1 высотой h=2,0 см, формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=16$ см, то модуль фокусного расстояния |F| линзы равен ... см.



24. График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке A на графике соответствует напряжение U на конденсаторе, равное ... В.

25. Если за время $\Delta t=30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W=31,7$ кВт \cdot ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.

- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.
- 27. На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов



$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om.}$$

В резисторе R_6 выделяется тепловая мощность $P_6 = 90.0$ Вт. Если внутреннее сопротивление источника тока r = 4.00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm JI}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4~\frac{\mathrm{pag}}{\mathrm{c}},$ то ёмкость C конденсатора равна ... мкФ.
- **30.** График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

